648(H) x 484(V) Pixel

Interline CCD Image Sensor

Performance Specification

Image Sensor Solutions

Eastman Kodak Company

Rochester, New York 14650-2010

Revision 4

November 10, 1999

Table of Contents

1.1	Features	5
1.2	Description	6
1.3	Architecture	6
1.4	Image Acquisition	6
1.5	Charge Transport	6
1.6	Output Structure	7
1.7	Electronic Shutter	8
1.8	Color Filter Array (optional, for KAI-0311CM only)	8
2.1	Packaging Configuration	9
2.2	Pin Description	10
2.3	Absolute Maximum Range	11
2.4	DC Operating Conditions	12
2.5	AC Clock Level Conditions	13
2.6	AC Timing Requirements for 20 MHz Operation	14
	Frame Timing - Single Register Readout	15
	Line Timing - Single Register Readout	16
	Pixel Timing - Single Register Readout	17
	Electronic Shutter Timing - Single Register Readout	18
	Frame Timing - Dual Register Readout	19
	Line Timing - Dual Register Readout	20
	Pixel Timing - Dual Register Readout	21
	Fast Dump Timing – Removing Four Lines	22
	Binning – Two to One Line Binning	23
	Timing – Sample Video Waveform	24
3.2	Image Specifications	
	Electro-Optical for KAI-0311CM	25
	Electro-Optical for KAI-0311M	27
	CCD	29
	Output Amplifier @ $V_{DD} = 15V$, $V_{SS} = 0.0V$	29
	General	30
3.3	Defect Classification	33
4.1	Climatic Requirements	34
4.2	Quality Assurance and Reliability	34
4.3	Ordering Information	35

Figures

Figure 1 Functional Block Diagram	5
Figure 2 Output Structure	7
Figure 3 CFA Pattern	
Figure 4 Device Drawing – Die Placement	
Figure 5 Pinout Diagram Top View	10
Figure 6 Recommended Output Structure Load Diagram	12
Figure 7 Frame Timing - Single Register Readout	15
Figure 8 Line Timing - Single Register Output	16
Figure 9 Pixel Timing Diagram - Single Register Readout	17
Figure 10 Electronic Shutter Timing Diagram - Single Register Readout	18
Figure 11 Frame Timing - Dual Register Readout	19
Figure 12 Line Timing - Dual Register Output	20
Figure 13 Pixel Timing Diagram - Dual Register Readout	21
Figure 14 Fast Line Dump Timing - Removing Four Lines	22
Figure 15 Binning - 2 to 1 Line Binning	23
Figure 16 Sample Video Waveform at 5MHz	24
Figure 17 Nominal KAI 0311CM Spectral Response	26
Figure 18 Nominal KAI-0311M Spectral Response	27
Figure 19 Angular Dependence on Quantum Efficiency	28
Figure 20 Typical KAI-0311Series Photoresponse	30
Figure 21 Example of Vsat versus Vsub	31
Figure 22 Frame Rate versus Horizontal Clock Frequency	32

Tables

Table 1 Package Pin Assignments	
Table 2 Absolute Maximum Ranges	11
Table 3 DC Operating Conditions	
Table 4 AC Clock Level Conditions	
Table 5 AC Timing Requirements for 20 MHz Operation	14
Table 6 Electro-Optical Image Specifications KAI-0311CM	25
Table 7 Electro-Optical Image Specifications KAI-0311M	27
Table 8 CCD Image Specifications	29
Table 9 Output Amplifier Image Specifications	29
Table 10 General Image Specifications	30
Table 11 Climatic Requirements	34
Table 12 Part Numbers - Monochrome, Microlens, Sealed Glass	
Table 13 Part Numbers - Monochrome, Microlens, Taped Glass	
Table 14 Part Numbers - Monochrome, Taped Glass	37
Table 15 Part Numbers - Color, Microlens, Sealed Glass	
Table 16 Part Numbers - Color, Microlens, Taped Glass	38
Appendix	
Appendix 1 Part Number Availability	36

1.1 Features

- Front Illuminated Interline Architecture
- 648 (H) x 484 (V) Photosensitive Pixels
- 9.0μm(H) x 9.0μm(V) Pixel Size
- 5.83 mm(H) x 4.36 mm(V) Photosensitive Area
- Progressive Scan (Noninterlaced)
- Electronic Shutter
- Integral RGB Color Filter Array (optional)
- Advanced 2 Phase Buried Channel CCD Processing

- On-Chip Dark Reference Pixels
- Low Dark Current
- Patented High Sensitivity Output Structure
- Dual Output Shift Registers
- Antiblooming Protection
- Negligible Lag
- Low Smear (0.01% with microlens)

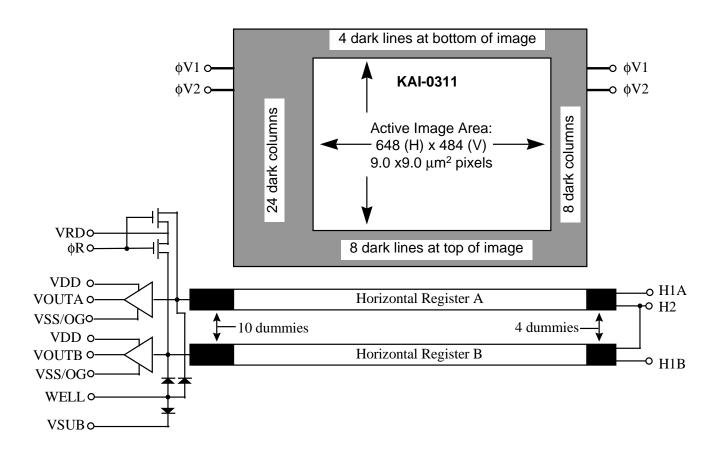


Figure 1 Functional Block Diagram

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947

Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

1.2 Description

The KAI-0311 series is a VGA resolution charge coupled device (CCD) image sensor whose noninterlaced architecture makes it ideally suited for video, electronic still and motion/still camera applications. The device is built using an advanced true two-phase, double-polysilicon, NMOS CCD technology. The p+npn-photodetector elements eliminate image lag and reduce image smear while providing antiblooming protection and electronic-exposure control. The total chip size is 7.3 (H) mm x 5.52 (V) mm. The KAI-0311 comes in monochrome and color versions, both with microlens for sensitivity improvement.

Device	Color	Microlens
KAI-0311	No	No
KAI-0311M	No	Yes
KAI-0311CM	Yes	Yes

1.3 Architecture

The KAI-0311 consists of 648 x 484 photodiodes, 680 vertical (parallel) CCD shift registers (VCCDs), and dual 496 pixel horizontal (serial) CCD shift registers (HCCDs) with independent output structures. The device can be operated in either single or dual line mode. The advanced, progressive-scan architecture of the device allows the entire image area to be read out in a single scan. The active pixels are surrounded by an additional 32 columns and 12 rows of light-shielded dark reference pixels.

1.4 Image Acquisition

An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole pairs within the individual silicon photodiodes. These photoelectrons are collected locally by the formation of potential wells at each photosite. Below photodiode saturation, the number of photoelectrons collected at each pixel is linearly dependent on light level and exposure time and non-linearly dependent on wavelength. When the photodiode's charge capacity is reached, excess electrons are discharged into the substrate to prevent blooming.

1.5 Charge Transport

The accumulated or integrated charge from each photodiode is transported to the output by a three step process. The charge is first transported from the photodiodes to the VCCDs by applying a large positive voltage to the phase-one vertical clock (ϕ V1). This reads out every row, or line, of photodiodes into the VCCDs.

The charge is then transported from the VCCDs to the HCCDs line by line. Finally, the HCCDs transport these rows of charge packets to the output structures pixel by pixel. On each falling edge of the horizontal clock, ϕ H2, these charge packets are dumped over the output gate (OG, Figure 2) onto the floating diffusion (FDA and FDB, Figure 2).

Both the horizontal and vertical shift registers use traditional two-phase complementary clocking for charge transport. Transfer to the HCCDs begins when $\phi V2$ is clocked high and then low (while holding $\phi H1A$ high) causing charge to be transferred from $\phi V1$ to $\phi V2$ and subsequently into the A HCCD. The A register can now be read out in single line mode. If it is desired to operate the device in a dual line readout mode for higher frame rates, this line is transferred into the B HCCD by clocking $\phi H1A$ to a low state, and $\phi H1B$ to a high state while holding $\phi H2$ low. After $\phi H1A$ is returned to a high state, the next line can be transferred into the A HCCD. After this clocking sequence, both HCCDs are read out in parallel.

The charge capacity of the horizontal CCDs is slightly more than twice that of the vertical CCDs. This feature allows the user to perform two-to-one line aggregation in the charge domain during V-to-H transfer. This device is also equipped with a fast dump feature that allows the user to selectively dump complete lines (or rows) of pixels at a time. This dump, or line clear, is also accomplished during the V-to-H transfer time by clocking the fast dump gate.

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

1.6 Output Structure

Charge packets contained in the horizontal register are dumped pixel by pixel, onto the floating diffusion output node whose potential varies linearly with the quantity of charge in each packet. The amount of potential change is determined by the expression $\Delta V f d = \Delta Q/C f d$. A three stage source-follower amplifier is used to buffer this signal voltage off chip with slightly less than unity gain. The translation from the charge domain to the voltage domain is quantified by the output sensitivity or charge to voltage conversion in terms of $\mu V/e^-$. After the signal has been sampled off-chip, the reset clock (φR) removes the charge from the floating diffusion and resets its potential to the reset-drain voltage(VRD).

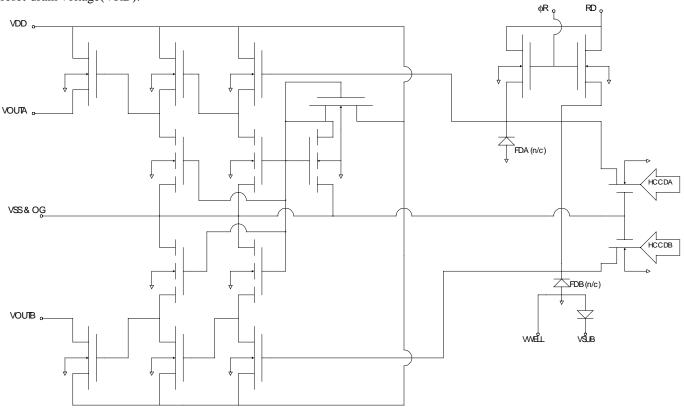


Figure 2 Output Structure

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

1.7 Electronic Shutter

The KAI-0311 provides a structure for the prevention of blooming which may be used to realize a variable exposure time as well as performing the anti-blooming function. The anti-blooming function limits the charge capacity of the photodiode by draining excess electrons vertically into the substrate (hence the name Vertical Overflow Drain or VOD) . This function is controlled by applying a large potential to the device substrate (device terminal SUB). If a sufficiently large voltage pulse (VES $\approx 40V$) is applied to the substrate, all photodiodes will be emptied of charge through the substrate, beginning the integration period. After returning the substrate voltage to the nominal value, charge can accumulate in the diodes and the charge packet is subsequently readout onto the VCCD at the next occurrence of the high level on $\phi V1$. The integration time is then the time between the falling edges of the substrate shutter pulse and $\phi V1$. This scheme allows electronic variation of the exposure time by a variation in the clock timing while maintaining a standard video frame rate.

Application of the large shutter pulse must be avoided during the horizontal register readout or an image artifact will appear due to feedthrough. The shutter pulse VES must be "hidden" in the horizontal retrace interval. The integration time is changed by skipping the shutter pulse from one horizontal retrace interval to another.

The smear specification is not met under electronic shutter operation. Under constant light intensity and spot size, if the electronic exposure time is decreased, the smear signal will remain the same while the image signal will decrease linearly with exposure. Smear is quoted as a percentage of the image signal and so the percent smear will increase by the same factor that the integration time has decreased. This effect is basic to interline devices.

1.8 Color Filter Array (optional, for KAI-0311CM only)

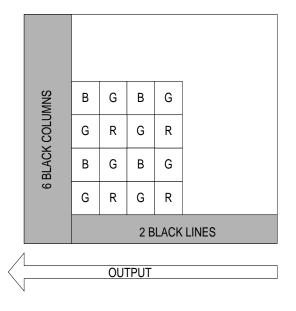


Figure 3 CFA Pattern

2.1 Packaging Configuration

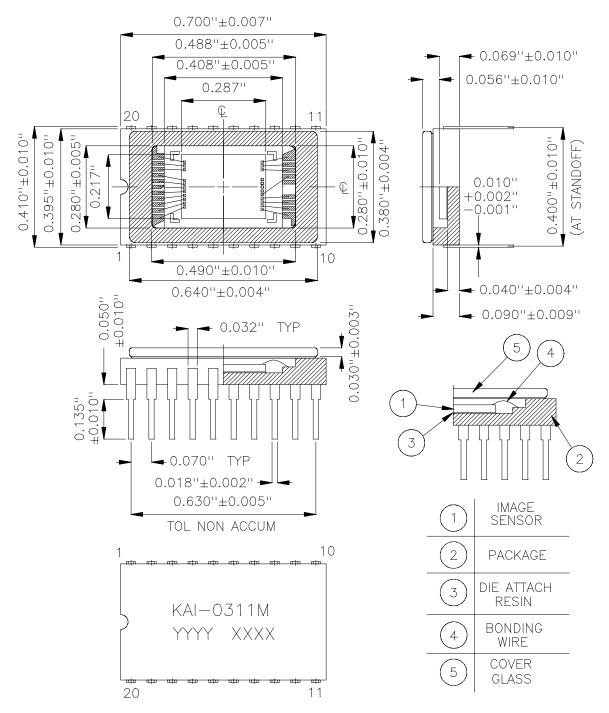


Figure 4 Device Drawing – Die Placement

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

11/10/99

2.2 Pin Description

PIN NO.	SYMBOL	DESCRIPTION	Notes
1	VoutA	Video Output Channel A	
2	Vss/OG	Output Amplifier Return and OG	
3	φR	Reset Clock	
4	Vrd	Reset Drain	
5	VoutB	Video Output Channel B	
6,8,13,16	Vwell	P-Well (Ground)	
7	фН2	A & B Horizontal CCD Clock - Phase 2	
9	фН1В	B Horizontal CCD Clock - Phase 1	
10,11	Vsub	Substrate	
12	фH1А	A Horizontal CCD Clock - Phase 1	
14	φV1O	Vertical CCD Clock - Phase 1, odd field	1
15	φV1E	Vertical CCD Clock - Phase 1, even field	1
17	φV2O	Vertical CCD Clock - Phase 2, odd field	2
18	φV2E	Vertical CCD Clock - Phase 2, even field	2
19	FDG	Fast Dump Gate	
20	VDD	Output Amplifier Supply	

Table 1 Package Pin Assignments

Notes:

- 1. Pins 14 and 15 must be connected together only 1 Phase 1 clock driver is required.
- 2. Pins 17 and 18 must be connected together only 1 Phase 2 clock driver is required.

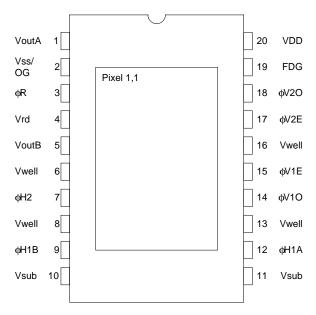


Figure 5 Pinout Diagram Top View

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

2.3 Absolute Maximum Range

RATING	DESCRIPTION	MIN.	MAX.	UNITS	NOTES
Temperature	Operation Without Damage	-50	+70	°C	
(@ 10% ±5%RH)	Storage	-55	+70	°C	
Voltage	SUB-WELL	0	+40	V	1
(Between Pins)	VRD,VDD,OG&VSS-WELL	0	+15	V	2
	VOUTA & VOUTB - WELL	0	+15	V	2
	φV1 - φV2	-12	+20	V	2
	φΗ1Α, φΗ1В - φΗ2	-12	+15	V	2
	фН1A, фН1B, фН2, FDG - фV2	-12	+15	V	2
	фН2 - OG & VSS	-12	+15	V	2
	φR - SUB	-20	0	V	1,2,4
	All Clocks - WELL	-12	+15	V	2
Current	Output Bias Current (I _{out})		10	mA	3

Table 2 Absolute Maximum Ranges

Notes:

- 1. Under normal operating conditions the substrate voltage should be above +7V, but may be pulsed to 40 V for electronic shuttering.
- 2. Care must be taken in handling so as not to create static discharge which may permanently damage the device.
- 3. Per Output. I_{out} affects the band-width of the outputs.
- 4. ϕR should never be more positive than VSUB.

2.4 DC Operating Conditions

SYMBOL	DESCRIPTION	MIN.	NOM.	MAX.	UNITS	PIN IMPEDANCE ⁵	NOTES
VRD	Reset Drain	8.5	9	9.5	V	$5pF, > 1.2M\Omega$	
IRD	Reset Drain Current		0.2		mA		
VSS	Output Amplifier Return & OG		0		V	$30 \text{pF}, > 1.2 \text{M}\Omega$	
ISS	Output Amplifier Return Current		5		mA		
VDD	Output Amplifier Supply	12	15.0	15.5	V	$30 \text{pF}, > 1.2 \text{M}\Omega$	
Iout	Output Bias Current		5	10	mA		4
WELL	P-well		0.0		V	Common	1
GND	Ground		0.0		V		1
FDG	Fast Dump Gate	-5.5	-5.0	-4.5	V	20pF, >1.2MΩ	2
SUB	Substrate	7	Vsub	15	V	$1nF, >1.2M\Omega$	3

Table 3 DC Operating Conditions

Notes:

- 1. The WELL and GND pins should be connected to P-well ground.
- 2. The voltage level specified will disable the fast dump feature.
- 3. This pin may be pulsed to Ves=40V for electronic shuttering
- 4. Per output. Note also that I_{out} affects the bandwidth of the outputs.
- Pins shown with impedances greater than 1.2 Mohm are expected resistances. These pins are only verified to 1.2 Mohm.
- 6. The operating levels are for room temperature operation. Operation at other temperatures may or may not require adjustments of these voltages.

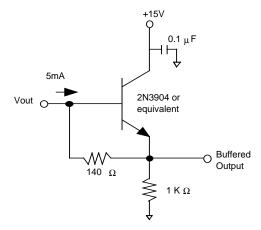


Figure 6 Recommended Output Structure Load Diagram

Cautions:

In order to obtain maximum device performance, gate protection is not provided. Extreme care must be taken in handling to prevent electrostatic discharge which may permanently damage the device. Care must be taken not to short the outputs to ground or VDD during operations.

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

2.5 AC Clock Level Conditions

SYMBOL	DESCRIPTION	Level	Min.	NOM.	MAX.	UNITS	PIN IMPEDANCE
φV1	Vertical CCD Clock	Low	-10.0	-9.5	-9.0	V	$25nF$, $>1.2M\Omega$
		Mid	0.0	0.2	0.4	V	
		High	8.5	9.0	9.5	V	
φV2	Vertical CCD Clock	Low	-10.0	-9.5	-9.0	V	$25nF$, $>1.2M\Omega$
		High	0.0	0.2	0.4	V	
фН1А	φ1 Horizontal CCD A Clock	Low	-7.5	-7.0	-6.5	V	$100 pF$, $> 1.2 M\Omega$
		High	2.5	3.0	3.5	V	
φH1B ⁴	φ1 Horizontal CCD B Clock	Low	-7.5	-7.0	-6.5	V	$100 pF$, $> 1.2 M\Omega$
	(single register mode)						
φH1B ⁴	φ1 Horizontal CCD B Clock	Low	-7.5	-7.0	-6.5	V	$100 pF$, $> 1.2 M\Omega$
	(dual register mode)	High	2.5	3.0	3.5	V	
фН2	φ2 Horizontal CCD Clock	Low	-7.5	-7.0	-6.5	V	$125 pF$, $> 1.2 M\Omega$
		High	2.5	3.0	3.5	V	
φR	Reset Clock	Low	-6.5	-6.0	-5.5	V	$5pF, > 1.2M\Omega$
		High	-0.5	0.0	0.5	V	
φFDG ³	Fast Dump Gate Clock	Low	-5.5	-5.0	-4.5	V	$20pF, > 1.2M\Omega$
		High	4.5	5.0	5.5	V	

Table 4 AC Clock Level Conditions

- Notes: 1. The AC and DC operating levels are for room temperature operation. Operation at other temperatures may or may not require adjustments of these voltages.
 - 2. Pins shown with impedances greater than 1.2 Mohm are expected resistances. These pins are only verified to 1.2 Mohm.
 - 3. When not used, refer to DC operating condition.
 - 4. For single register mode, set \$\phi H1B\$ to -7.0 volts at all times rather than clocking it.

This device is suitable for a wide range of applications requiring a variety of different operating conditions. Consult Eastman Kodak in those situations in which operating conditions meet or exceed minimum or maximum levels.

11/10/99 13

2.6 AC Timing Requirements for 20 MHz Operation

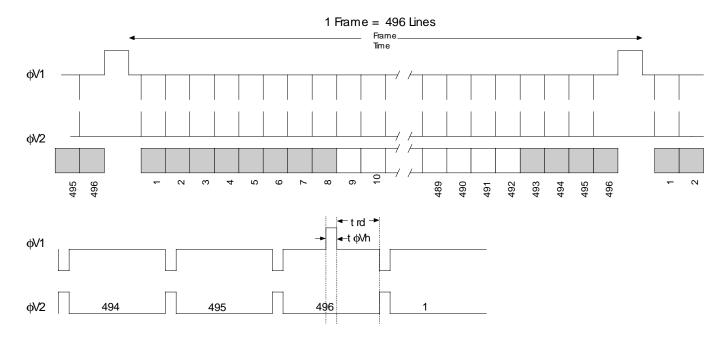
SYMBOL	DESCRIPTION	MIN	NOM	MAX	UNITS	NOTES	FIGURE
tφR	Reset Pulse Width		10		nsec		Figure 9
t es	Electronic Shutter Pulse Width	10	25		μsec		Figure 10
t int	Integration Time	0.1			msec	1	Figure 10
t ¢Vh	Photodiode to VCCD Transfer Pulse Width	4	5		μsec	2	Figure 7
t cd	Clamp Delay		15		nsec		Figure 9
t cp	Clamp Pulse Width		15		nsec		Figure 9
t sd	Sample Delay		35		nsec		Figure 9
t sp	Sample Pulse Width		15		nsec		Figure 9
t rd	Vertical Readout Delay	10			μsec		Figure 7
t ϕV	φV1, φV2 Pulse Width	3			μsec		Figure 8
Clock Frequency t \$\phi H\$	фН1А, фН1В , фН2		20		MHz		Figure 9
t øAB	Line A to Line B Transfer Pulse Width		3		μsec		Figure 12
t øHd	Horizontal Delay	3			μsec		Figure 8
t ¢Vd	Vertical Delay	25			nsec		Figure 8
t øHVES	Horizontal Delay with Electronic Shutter	1			μsec		Figure 10

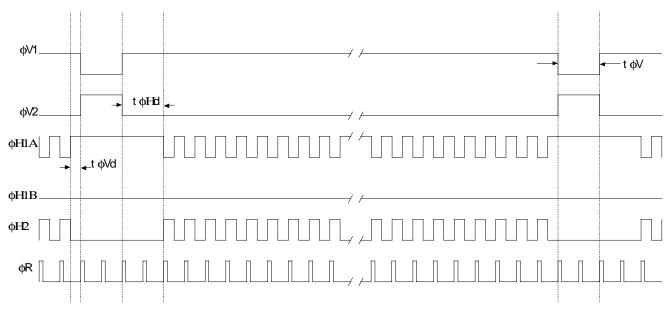
Table 5 AC Timing Requirements for 20 MHz Operation

Notes:

- 1. Integration time varies with shutter speed. It is to be noted that smear increases when integration time decreases below readout time (frame time). Photodiode dark current increases when integration time increases, while CCD dark current increases with readout time (frame time).
- 2. Antiblooming function is off during photodiode to VCCD transfer.

Frame Timing - Single Register Readout




Figure 7 Frame Timing - Single Register Readout

Note: When no electronic shutter is used, the integration time is equal to the frame time.

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Line Timing - Single Register Readout

H1Bheld low for single register operation

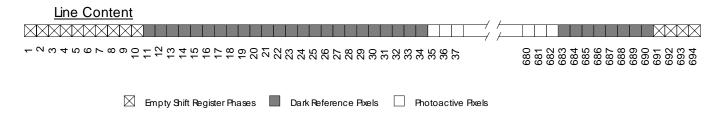


Figure 8 Line Timing - Single Register Output

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Pixel Timing - Single Register Readout

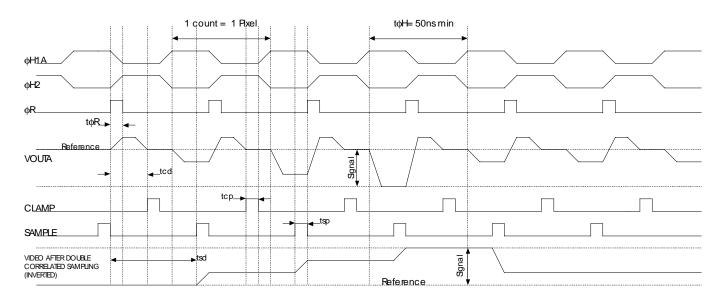
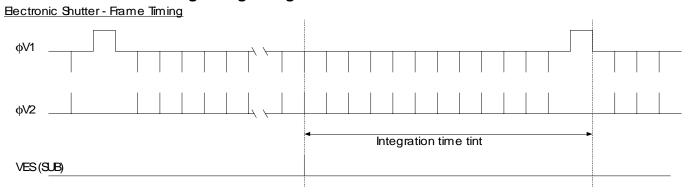
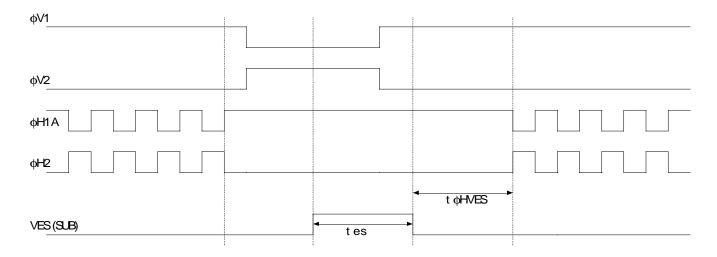



Figure 9 Pixel Timing Diagram - Single Register Readout



Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Electronic Shutter Timing - Single Register Readout

Bectronic Shutter - Placement

Bectronic Shutter - Operating Voltages

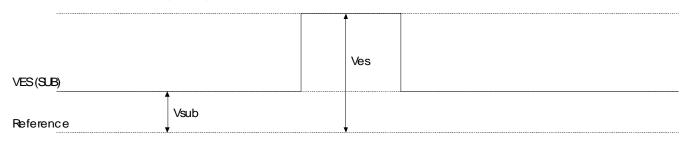


Figure 10 Electronic Shutter Timing Diagram - Single Register Readout

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Frame Timing - Dual Register Readout

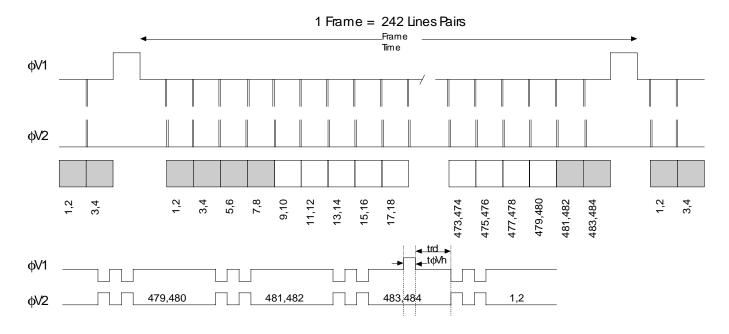
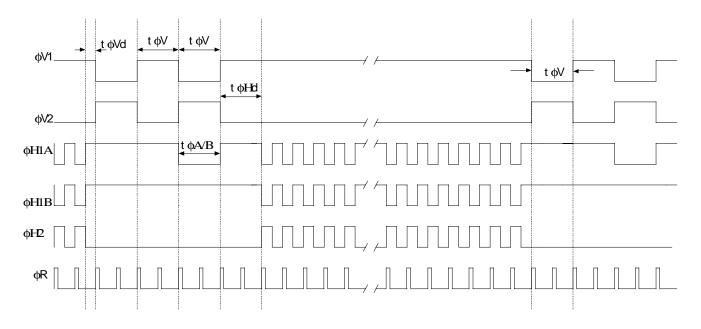



Figure 11 Frame Timing - Dual Register Readout

Note: When no electronic shutter is used, the integration time is equal to the frame time.

Line Timing - Dual Register Readout

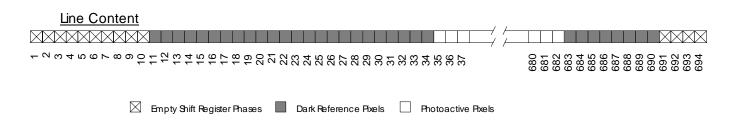


Figure 12 Line Timing - Dual Register Output

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Pixel Timing - Dual Register Readout

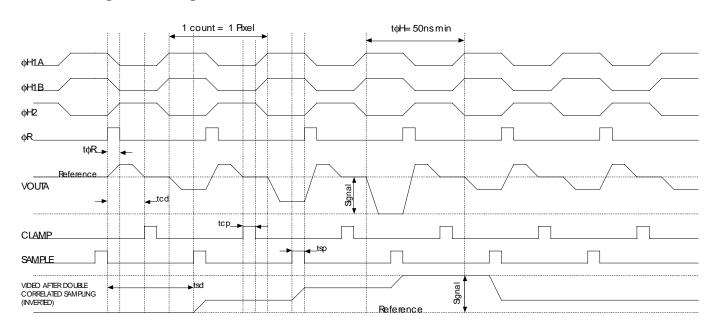


Figure 13 Pixel Timing Diagram - Dual Register Readout

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Fast Dump Timing - Removing Four Lines

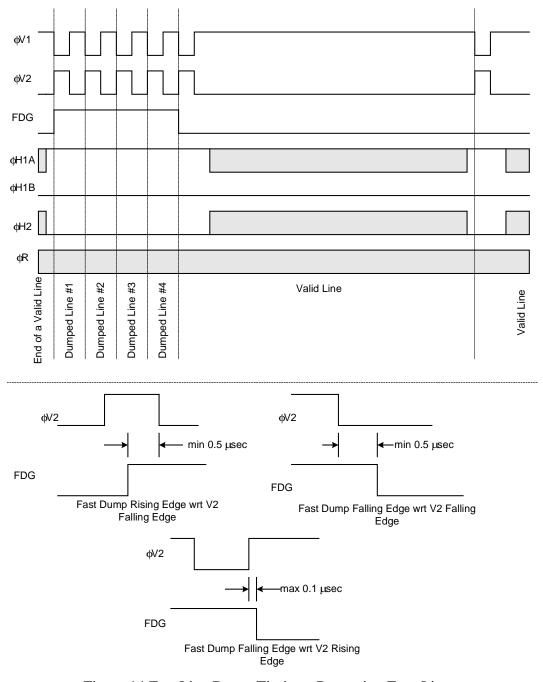


Figure 14 Fast Line Dump Timing - Removing Four Lines

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Binning – Two to One Line Binning

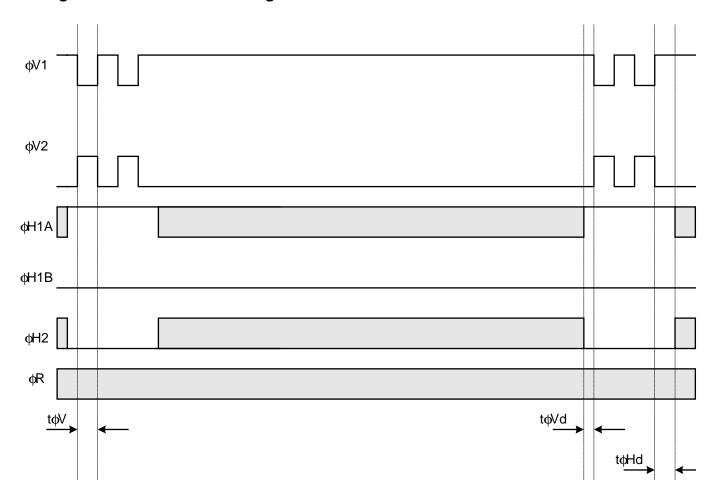


Figure 15 Binning - 2 to 1 Line Binning

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Timing – Sample Video Waveform

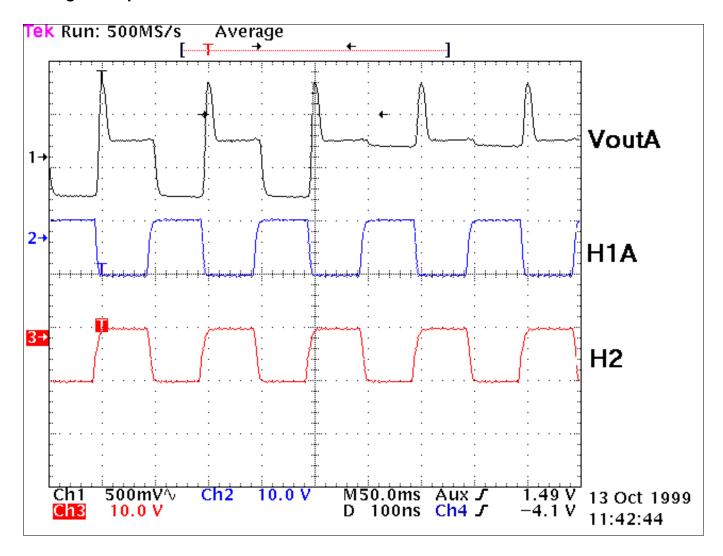


Figure 16 Sample Video Waveform at 5MHz

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

3.2 Image Specifications

All the following values were derived using nominal operating conditions using the recommended timing. Unless otherwise stated, readout time = 40ms, integration time = 40ms and sensor temperature = 40°C. Correlated double sampling of the output is assumed and recommended. Many units are expressed in electrons, to convert to voltage, multiply by the amplifier sensitivity.

Defects are excluded from the following tests and the signal output is referenced to the dark pixels at the end of each line unless otherwise specified.

Electro-Optical for KAI-0311CM

SYMBOL	PARAMETER	MIN.	NOM.	MAX.	UNITS	NOTES
FF	Optical Fill Factor		55.0		%	
E _{sat}	Saturation Exposure		0.046		$\mu J/cm^2$	1
QE _r	Red Peak Quantum Efficiency $\lambda = 650$ nm		22		%	2
QEg	Green Peak Quantum Efficiency λ =530nm		28		%	2
QE _b	Blue Peak Quantum Efficiency $\lambda = 450$ nm		20		%	2
Rgs	Green Photoresponse Shading		6		%	4
PRNU	Photoresponse Non-uniformity		5.0		p-p %	3
PRNL	Photoresponse Non-linearity		5.0		%	
	Amplifier Sensitivity		11.5		$\mu V/e^{\text{-}}$	

Table 6 Electro-Optical Image Specifications KAI-0311CM

Notes: 1.

- 1. For $\lambda = 530$ nm wavelength, and Vsat = 350mV.
- 2. Refer to typical values from Figure 17 Nominal KAI 0311CM Spectral Response.
- 3. Under uniform illumination with output signal equal to 280 mV.
- 4. This is the global variation in chip output for green pixels across the entire chip.
- 5. It is recommended to use low pass filter with $\lambda_{\text{cut-off}}$ at ~ 680nm for high performance.

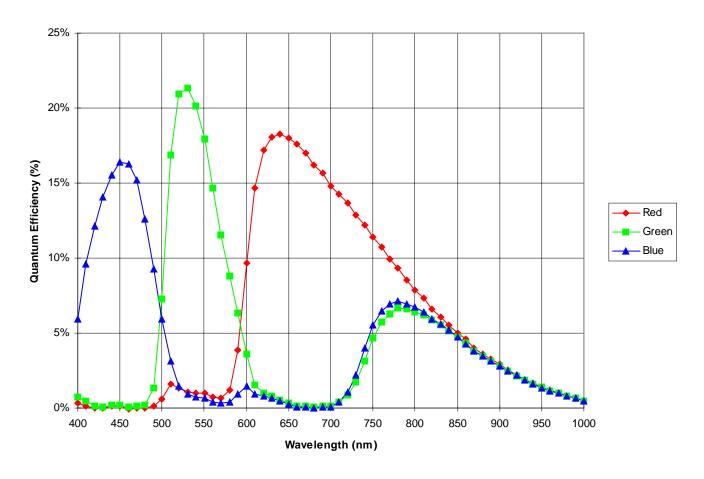


Figure 17 Nominal KAI 0311CM Spectral Response

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Electro-Optical for KAI-0311M

SYMBOL	PARAMETER	MIN.	NOM.	MAX.	UNITS	NOTES
FF	Optical Fill Factor		55.0		%	
E _{sat}	Saturation Exposure		0.037		μJ/cm ²	1
QE	Peak Quantum Efficiency		36		%	2
PRNU	Photoresponse Non-uniformity		5.0		р-р %	3
PRNL	Photoresponse Non-linearity		5.0		%	

Table 7 Electro-Optical Image Specifications KAI-0311M

Notes: 1. For $\lambda = 550$ nm wavelength, and Vsat = 350mV.

- 2. Refer to typical values from Figure 18 Nominal KAI-0311M Spectral Response
- 3. Under uniform illumination with output signal equal to 280 mV.

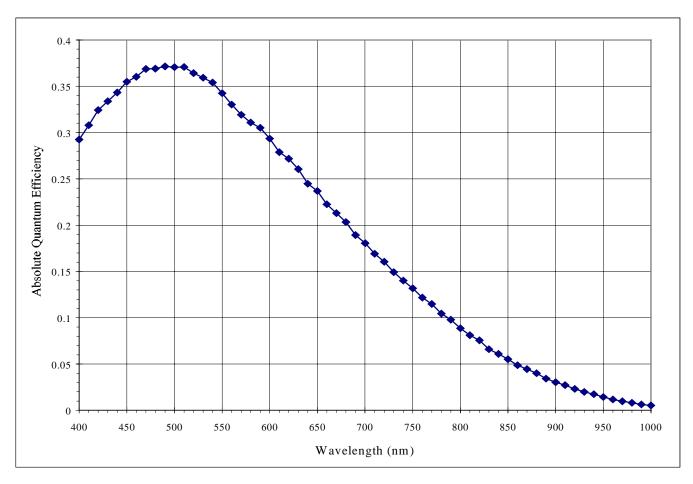


Figure 18 Nominal KAI-0311M Spectral Response

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

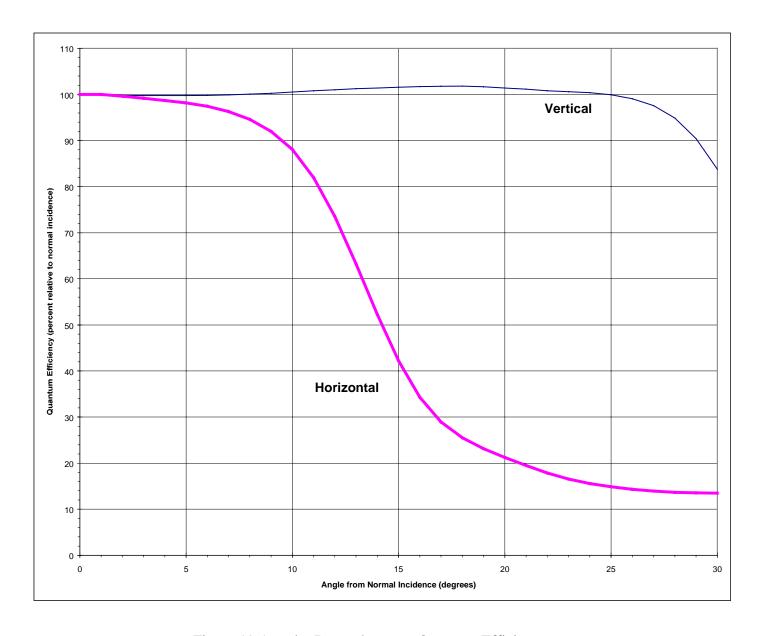


Figure 19 Angular Dependence on Quantum Efficiency

For the curve marked "Horizontal", the incident light angle is varied in a plane parallel to the HCCD. For the curve marked "Vertical", the incident light angle is varied in a plane parallel to the VCCD.

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010 Phone (716) 722-4385 Fax (716) 477-4947 Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

CCD

SYMBOL	PARAMETER	MIN.	NOM.	MAX.	UNITS	NOTES
Vsat	Output Saturation Voltage		350		mV	1,2,8
I_d	Dark Current			0.5	nA	
DCDT	Dark Current Doubling Temp	7	8	10	°C	
CTE	Charge Transfer Efficiency		0.99999			2,3
f_{H}	Horizontal CCD Frequency			40	MHz	4
IL	Image Lag			100	e	5
Xab	Blooming Margin		100			6,8
Smr	Vertical Smear		0.01		%	7

Table 8 CCD Image Specifications

Notes:

- 1. Vsat is the green pixel mean value at saturation as measured at the output of the device with Xab=1. Vsat can be varied by adjusting Vsub.
- 2. Measured at sensor output.
- 3. With stray output load capacitance of $C_L = 10 \text{ pF}$ between the output and AC ground.
- 4. Using maximum CCD frequency and/or minimum CCD transfer times may compromise performance.
- 5. This is the first field decay lag measured by strobe illuminating the device at (Hsat,Vsat), and by then measuring the subsequent frame's average pixel output in the dark.
- 6. Xab represents the increase above the saturation-irradiance level (Hsat) that the device can be exposed to before blooming of the vertical shift register will occur. It should also be noted that Vout rises above Vsat for irradiance levels above Hsat, as shown in Figure 20.
- Measured under 10% (~ 100 lines) image height illumination with white light source and without electronic shutter operation and below Vsat.
- 8. It should be noted that there is trade off between Xab and Vsat.

Output Amplifier @ $V_{DD} = 15V$, $V_{ss} = 0.0V$

SYMBOL	PARAMETER	MIN.	NOM.	MAX.	UNITS	NOTES
Vodc	Output DC Offset		7		V	1,2
Pd	Power Dissipation		55		mW	3
f _{-3db}	Output Amplifier Bandwidth		140		MHz	1,4
C_{L}	Off-Chip Load			10	pF	

Table 9 Output Amplifier Image Specifications

Notes:

- 1. Measured at sensor output with constant current load of $I_{out} = 5mA$ per output.
- 2. Measured with VRD = 9v during the floating-diffusion reset interval, (φR high), at the sensor output terminals.
- Both channels.
- 4. With stray output load capacitance of $C_L = 10 \text{ pF}$ between the output and AC ground.

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

General

SYMBOL	PARAMETER	MIN.	NOM.	MAX.	UNITS	NOTES
Vn - total	Total Sensor Noise		0.5		mV, rms	1
DR	Dynamic Range			58	dB	2

Table 10 General Image Specifications

Notes: 1. Includes amplifier noise and dark current shot noise at data rates of 10MHz. The number is based on the full bandwidth of the amplifier. It can be reduced when a low pass filter is used.

2. Uses 20LOG(Vsat/Vn - total) where Vsat refers to the output saturation signal.

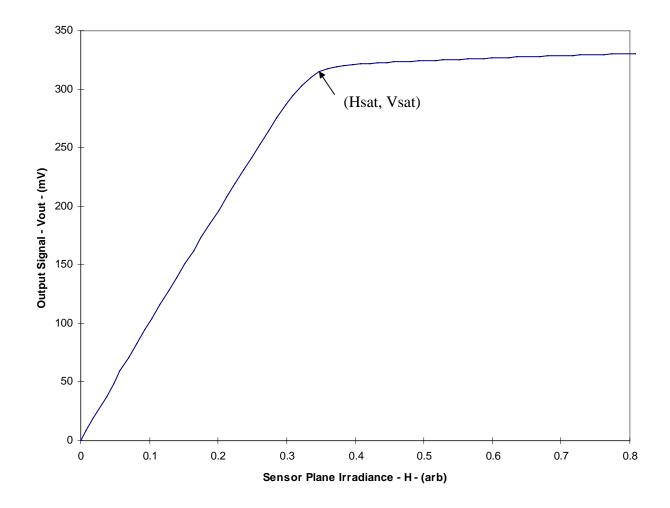


Figure 20 Typical KAI-0311Series Photoresponse

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

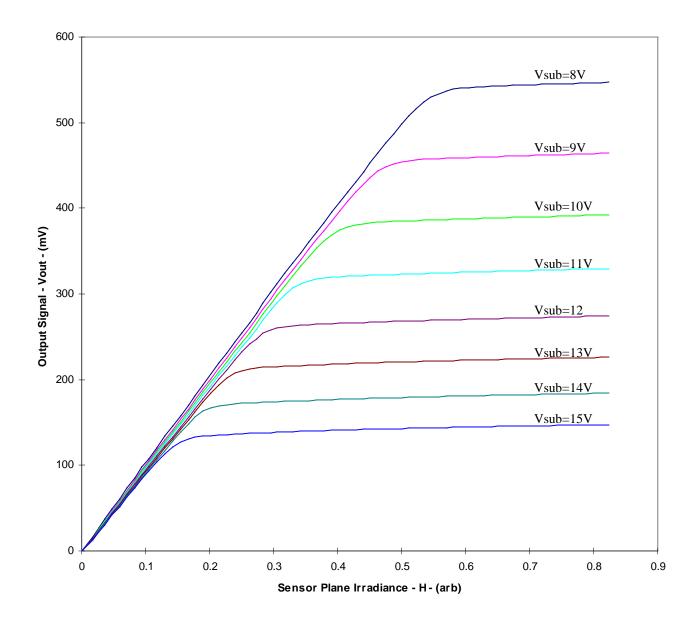


Figure 21 Example of Vsat versus Vsub

As Vsub is decreased, Vsat increases and anti-blooming protection decreases. As Vsub is increased, Vsat decreases and anti-blooming protection increases.

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

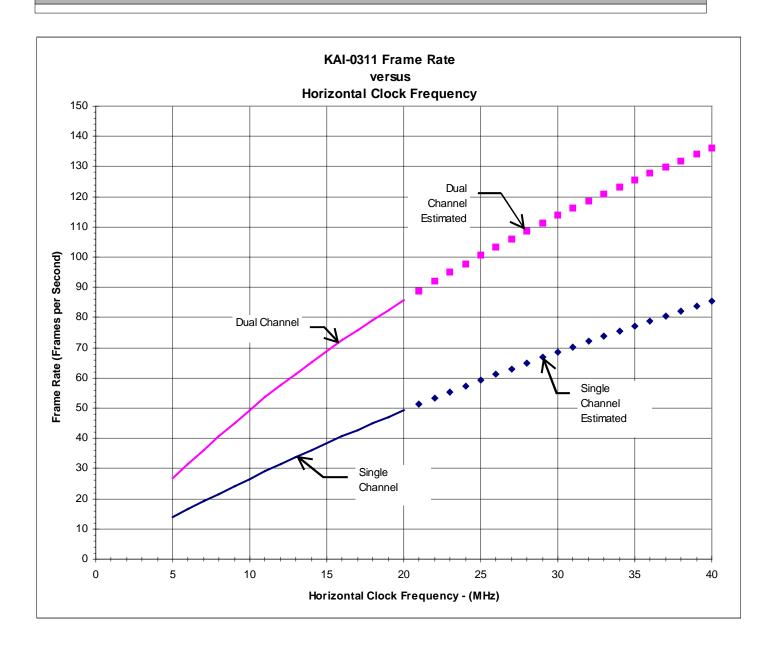


Figure 22 Frame Rate versus Horizontal Clock Frequency

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

3.3 Defect Classification

All values derived under nominal operating conditions at 40°C operating temperature.

Class	Point Defects		Cluster De	fects Total	Column Defects Total
	Major	Minor	Total	Zone A	
0	0	0	0	0	0
1	≤2	≤15	0	0	0
2	≤8	≤60	≤2	0	0

Zone A The central 324H x 242V pixel region in the imaging area

Major Defective Pixel A pixel whose signal deviates by more than 25 mV from the mean

value of all active pixels under dark field condition or by more than

15% from the mean value of all active pixels under uniform

illumination at 80% of saturation.

Minor Defective Pixel A pixel whose signal deviates by more than 6mV from the mean

value of all active pixels under dark field condition.

Point Defect An isolated defective pixel.

Cluster Defect A group of 2 to 4 contiguous major defective pixels.

Column Defect A group of more than 4 contiguous major defective pixels along a

single column or row.

Note: No row defects are allowed.

Test Conditions

Junction Temperature $(T_i) = 40^{\circ}C$

Integration Time $(t_{int}) = 40$ msec

Readout Rate $(t_{readout}) = 40$ msec

4.1 Climatic Requirements

ITEM	DESCRIPTION	MIN.	MAX.	UNITS	CONDITIONS	NOTES
Operation to Specification	Temperature	-25	+40	oС	@ 10% ±5% RH	1, 2
	Humidity	10±5	86±5	%RH	@ 36 ±2°C Temp.	1, 2
Operation Without Damage	Temperature	-50	+70	оС	@ 10% ±5% RH	2, 3
Storage	Temperature	-55	+70	оС	@ 10% ±5%RH	2, 4
	Humidity		95±5	%RH	@ 49 ±2°C Temp.	2, 4

Table 11 Climatic Requirements

Notes:

- 1. The image sensor shall meet the specifications of this document while operating at these conditions.
- 2. The tolerance on all relative humidity values is provided due to limitations in measurement instrument accuracy.
- The image sensor shall continue to function but not necessarily meet the specifications of this document while operating at the specified conditions.
- 4. The image sensor shall meet the specifications of this document after storage for 15 days at the specified conditions.

4.2 Quality Assurance and Reliability

- 4.2.1 Quality Strategy: All devices will conform to the specifications stated in this document. This is accomplished through a combination of statistical process control and inspection at key points of the production process.
- 4.2.2 Replacement: All devices are warranted against failures in accordance with the Terms of Sale.
- 4.2.3 Cleanliness: Devices are shipped free of contamination, scratches, etc. that would cause a visible defect.
- 4.2.4 ESD Precautions: Devices are shipped in a static-safe containers and should only be handled at static-safe work stations.
- 4.2.5 Reliability: Information concerning the quality assurance and reliability testing procedures and results are available from the Microelectronics Technology Division and can be supplied upon request.
- 4.2.6 Test Data Retention: Devices have an identifying number traceable to a test data file. Test data is kept for a period of 2 years after date of shipment.

4.3 Ordering Information

See Appendix 1 for available part numbers.

Address all inquiries and purchase orders to:

Microelectronics Technology Division

Eastman Kodak Company

Rochester, New York 14650-2010

Phone: (716) 722-4385 Fax: (716) 477-4947

Web: www.kodak.com/go/ccd

E-mail: ccd@kodak.com

Kodak reserves the right to change any information contained herein without notice. All information furnished by Kodak is believed to be accurate.

WARNING: LIFE SUPPORT APPLICATIONS POLICY

Kodak image sensors are not authorized for and should not be used within Life Support Systems without the specific written consent of the Eastman Kodak Company. Product warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.

Appendix1 Part Number Availability

Note:

This appendix may be updated independently of the performance specification. Contact Eastman Kodak Company for the latest revision.

Monochrome, Microlens, Sealed Glass

onochi onic, where	ns, bearea Glass	
Device Name	Available	Features
	Part Numbers	
KAI-0311M	2H4035	648(H) x 484(V) active pixel, progressive scan CCD with
		Microlens, Sealed clear glass, Class 0
KAI-0311M	2H4036	648(H) x 484(V) active pixel, progressive scan CCD with
		Microlens, Sealed clear glass, Class 1
KAI-0311M	2H4028	648(H) x 484(V) active pixel, progressive scan CCD with
		Microlens, Sealed clear glass, Class 2
KAI-0311M	2H4037	648(H) x 484(V) active pixel, progressive scan CCD with
		Microlens, Sealed clear glass, Engineering Class
KAI-0311M	2H4038	648(H) x 484(V) active pixel, progressive scan CCD with
		Microlens, Sealed clear glass, Mechanical Class

Table 12 Part Numbers - Monochrome, Microlens, Sealed Glass

Monochrome, Microlens, Taped Glass

Device Name	Available Part Numbers	Features
KAI-0311M	2H4666	648(H) x 484(V) active pixel, progressive scan CCD with Microlens, Taped clear glass, Class 0
KAI-0311M	2H4667	648(H) x 484(V) active pixel, progressive scan CCD with Microlens, Taped clear glass, Class 1
KAI-0311M	2H4064	648(H) x 484(V) active pixel, progressive scan CCD with Microlens, Taped clear glass, Class 2
KAI-0311M	2H4668	648(H) x 484(V) active pixel, progressive scan CCD with Microlens, Taped clear glass, Engineering Class
KAI-0311M	2H4669	648(H) x 484(V) active pixel, progressive scan CCD with Microlens, Taped clear glass, Mechanical Class

Table 13 Part Numbers - Monochrome, Microlens, Taped Glass

Eastman Kodak Company – Image Sensor Solutions - Rochester, NY 14650-2010
Phone (716) 722-4385 Fax (716) 477-4947
Web: www.kodak.com/go/ccd E-mail: ccd@kodak.com

Monochrome, Taped Glass

Device Name	Available	Features
	Part Numbers	
KAI-0311	2H4648	648(H) x 484(V) active pixel, progressive scan CCD, Taped
		clear glass, Class 0
KAI-0311	2H4660	648(H) x 484(V) active pixel, progressive scan CCD, Taped
		clear glass, Class 1
KAI-0311	2H4661	648(H) x 484(V) active pixel, progressive scan CCD, Taped
		clear glass, Class 2
KAI-0311	2H4649	648(H) x 484(V) active pixel, progressive scan CCD, Taped
		clear glass, Engineering Class
KAI-0311	2H4650	648(H) x 484(V) active pixel, progressive scan CCD, Taped
		clear glass, Mechanical Class

Table 14 Part Numbers - Monochrome, Taped Glass

Color, Microlens, Sealed Glass

Device Name	Available	Features
	Part Numbers	
KAI-0311CM	2H4030	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Sealed clear glass, Class 0
KAI-0311CM	2H4031	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Sealed clear glass, Class 1
KAI-0311CM	2H4029	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Sealed clear glass, Class 2
KAI-0311CM	2H4032	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Sealed clear glass, Engineering Class
KAI-0311CM	2H4033	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Sealed clear glass, Mechanical Class

Table 15 Part Numbers - Color, Microlens, Sealed Glass

Color, Microlens, Taped Glass

Device Name	Available	Features
	Part Numbers	
KAI-0311CM	2H4670	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Taped clear glass, Class 0
KAI-0311CM	2H4671	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Taped clear glass, Class 1
KAI-0311CM	2H4034	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Taped clear glass, Class 2
KAI-0311CM	2H4672	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Taped clear glass, Engineering Class
KAI-0311CM	2H4673	648(H) x 484(V) active pixel, progressive scan CCD with CFA
		and Microlens, Taped clear glass, Mechanical Class

Table 16 Part Numbers - Color, Microlens, Taped Glass

